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A diffracted beam h will maintain a constant intensity on passing between the two parts of a twinned crystal if there exists
at least one point operator R in the set of equivalent operators describing the boundary such that: Rh = h (1) and Rk, =
k, (2), where k, is the wave vector of the incident beam. For the zero beam, relation (2) becomes: Rk, = +k, (2').

Conventional electron micrographs of twins generally ex-
hibit a change in background intensity at the interface in
both bright- and dark-field images. However, for particular
directions of the incident beam, some diffracted beams may
show no intensity change between adjacent twinned domains
(Portier, Gratias & Fayard, 1977). A well-known example is
given by bright-field images which never show an intensity
change between inverse crystals. A theoretical explanation
has been given by (Serneels, Snykers, Delavignette, Gevers
& Amelinckx, 1973) using the column approximation and
two-dimensional dynamical diffraction.

The role of upper-layer interactions in electron diffraction
symmetries has been studied in detail for the convergent-
beam method (Goodman, 1974; Steeds, Tatlock & Hamp-
son, 1973) which shows the relation between the crystal sym-
metry and the symmetries of the beam patterns.

The present work is an attempt to give the geometrical
conditions under which an electron beam diffracted by a
crystal in a given direction maintains constant intensity when
diffracted by an adjacent twin crystal. When this condition is
fulfilled a conventional electron micrograph, exposed with
this diffracted beam, reveals the same illuminating back-
ground intensity for the two adjacent twin crystals, except at
the overlap region where interface fringes are generally
found. We shall disregard here these fringes and use the
three-dimensional dynamical diffraction formulation (Cow-
ley & Moodie, 1957) within the column approximation.

We designate by (RI7) one of the geometrical space
operations — in Seitz (1936) notation — which relate the
homologous points ! and r'! of the crystal twins I and II:

(RID)e!' ="' =R + 7. (1)
The crystal potentials are related by:
VI[(RI7) 1] = V(r)
and their Fourier components by:
FU(R-'h) = F'(h) exp(2irh. 7). )

Using the same method as Gjonnes & Moodie (1965) for
the extinction conditions in electron diffraction, we consider
any given multiscattering path in crystal I:
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corresponding to the general term of the series involved in
dynamical scattering (Cowley & Moodie, 1962):
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for the expression of the scattered wave in the h direction.
are the excitation errors of the >’%_, h; spots and Z is a
totally symmetric function of {;.
According to relation (2) an equivalent term is given in

crystal II by the multiscattering path:
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for the R~'h direction, with equal modulus and a constant
[exp(2izh .7)] phase change, only if the Z functions are
equal, i.e. if

Rk, = k,. 3)

Relation (3) leads to the equality of intensity between the
spots h and R~'h. There will then be no change in back-
ground intensity if h and R~'h are superimposed:

Rh=h. 4)

These two conditions (3) and (4) give the geometrical rule
for an h spot to exhibit no intensity change on the two sides
of a twin boundary.

The central spot needs particular attention: every multi-
scattering path being closed, it can always be equivalently
described in two ways:

h,h,,..,h,_,,0 and —h,_,,—h, ,...,—h,0.

n- n-

The second path is equivalent to the first path but with —k,
wave vector for the incident beam, so that relation (3) now
has to include the minus sign:

Rk, = tk, (%)

The minus sign is obviously superfluous for centrosym-
metric structures but has to be considered in the non-centro-
symmetric case. In particular relation (5) is always satisfied
for an inversion boundary (R = 1) and for any orientation of
the incident beam: the Friedel law is always satisfied for
bright-field images in three-dimensional diffraction.

Table 1 illustrates relations (3) and (5) for the cases where
R is a crystallographic operation (merohedral twins or twins
generated by a length-preserving phase transition). As an
example of the use of the table let us consider the inversion
twins obtained by ordering of LiFe,O4 (Portier, Gratias &
Fayard, 1977). The point group of the ordered structure
being {432}, an inversion boundary is characterized by the
multiplication of the inversion 1 by the elements of {432}:

{R} =1 x {432}.

We consider the [111] zone axis diffraction (Fig. 1). There is
no centre of symmetry in the two-dimensional projection of
the crystal and inverse domains generally show a difference
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of background intensity. However, it may be possible to
obtain equal intensity for dark-field micrographs performed
with h diffraction spots satisfying relation (4) for at least one
point operator of {R}. Such is the case for the (110) and

Table 1. Conditions under which a diffracting spot h = Rh
exhibits no intensity change between crystal twins

O intersection of k, with the diffracting plane.
A intersection of the R operation with the diffracting plane.

Location of the projection of the centre
of the Ewald sphere on the diffracting

plane
Upper-layer Zero-layer
R interactions interactions
Even axis perpendicular Only central spot A
to kg 0
Axis parallel to k, Only central spot
o
Mirror perpendicular Only central spot Always
to kg o
Mirror parallel to k, A

Inversion centre Only central spot

Always

il

011 21

112

Fig. 1. Example of use of the table: geometrical locus 4 of the pro-
jection of the Ewald sphere for the 211 reflection to show no
backgound intensity change between two inverse domains of
point group 432. If k, is exactly projected on O all the 112-type
reflections of the pattern show no background intensity change.
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{112)-type reflections because R, = 1 X 299;, = mgp,; and
R, =1x 244 = Mio1iy leave respectively 110 and 211
invariant. From Table 1 it can be shown that R = m,,
may not satlsfy relation (3) for the [111] zone axis because
this mirror is neither parallel nor perpendicular to the zone
axis (k, is not invariant by this mirror). The {110} spots
exhibit a difference in background intensity between inverse
domains. On the contrary, the mlommirror being parallel to
the zone axis whatever the orientation of k, such that k, is
contained in m, the h = 211 spot shows no background
intensity change. In this case the projection of the Ewald
sphere centre is located on the 4 geometrical locus of the
table, which is the intersection of the R mirror with the
diffracting zone. This result holds for zero- and upper-layer
interactions. Moreover, the (110)-type reflections of the
pattern deduced from each other by the R-mirror have
exchanged intensities between the inverse domains, because
relation (3) is satisfied. If we try to obtain equal intensities in
inverse domains for all the (112)-type spots in the
pattern, the k; vector has to be simultaneously invariant with
respect to the different R mirrors involved (7 501" yoTpM o011y
the projection of the Ewald sphere must exactly correspond
to the central spot O (intersection of k, with the diffracting
zone); in this case the actual trig_onal symmetry of the
pattern clearly appears because the 110, 101 and 011 spots
exhibit the same intensity for a given crystal (and are
exchanged with the 110, 101, 011 spots for the inverse
crystal). The experimental observatlons of these symmetry
properties have been shown previously (Portier ef al., 1977).
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