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A diffracted beam h will maintain a constant intensity on passing between the two parts of a twinned crystal if there exists 
at least one point operator R in the set of equivalent operators describing the boundary such that: Rh = h (1) and Rk 0 :-= 
k 0 (2), where k 0 is the wave vector of the incident beam. For the zero beam, relation (2) becomes: Rk 0 = +k 0 (2'). 

Conventional electron micrographs of twins generally ex- 
hibit a change in background intensity at the interface in 
both bright- and dark-field images. However, for particular 
directions of the incident beam, some diffracted beams may 
show no intensity change between adjacent twinned domains 
(Portier, Gratias & Fayard, 1977). A well-known example is 
given by bright-field images which never show an intensity 
change between inverse crystals. A theoretical explanation 
has been given by (Serneels, Snykers, Delavignette, Gevers 
& Amelinckx, 1973) using the column approximation and 
two-dimensional dynamical diffraction. 

The role of upper-layer interactions in electron diffraction 
symmetries has been studied in detail for the convergent- 
beam method (Goodman, 1974; Steeds, Tatlock & Hamp- 
son, 1973) which shows the relation between the crystal sym- 
metry and the symmetries of the beam patterns. 

The present work is an attempt to give the geometrical 
conditions under which an electron beam diffracted by a 
crystal in a given direction maintains constant intensity when 
diffracted by an adjacent twin crystal. When this condition is 
fulfilled a conventional electron micrograph, exposed with 
this diffracted beam, reveals the same illuminating back- 
ground intensity for the two adjacent twin crystals, except at 
the overlap region where interface fringes are generally 
found. We shall disregard here these fringes and use the 
three-dimensional dynamical diffraction formulation (Cow- 
ley & Moodie, 1957) within the column approximation. 

We designate by (R I r) one of the geometrical space 
operations - in Seitz (1936) notation - which relate the 
homologous points r I and r II of the crystal twins I and II: 

(RIr)r I = r xl = Rr I + z. (1) 

The crystal potentials are related by: 

VII(R I r) r] = VII(r) 

and their Fourier components by: 

Fn(R -1 h) = F'(h) exp(2irch, r). (2) 

Using the same method as Gjonnes & Moodie (1965) for 
the extinction conditions in electron diffraction, we consider 
any given multiscattering path in crystal I: 

n--1 

h l, h2, ..., h -- )" h i 
i=1 

corresponding to the general term of the series involved in 
dynamical scattering (Cowley & Moodie, 1962): 

F '(hl)  FI(hz). . .  F '  h - -  h .Z(¢,, ¢2 . . . . .  0 
i=1 

for the expression of the scattered wave in the h direction, ffi 
are the excitation errors of the X~=1 hi spots and Z is a 
totally symmetric function of ~r 

According to relation (2) an equivalent term is given in 
crystal II by the multiscattering path: 

n--I  

R -1  h 1, R -1  h 2 . . . .  R -1  h - ~" R - I  h i 

i=1 

for the R - l h  direction, with equal modulus and a constant 
[exp(2i~h.~)] phase change, only if the Z functions are 
equal, i.e. if 

Rk 0 = k 0. (3) 

Relation (3) leads to the equality of intensity between the 
spots h and R - lh .  There will then be no change in back- 
ground intensity if h and R -I h are superimposed: 

Rh = h. (4) 

These two conditions (3) and (4) give the geometrical rule 
for an h spot to exhibit no intensity change on the two sides 
of a twin boundary. 

The central spot needs particular attention: every multi- 
scattering path being closed, it can always be equivalently 
described in two ways: 

hi, h 2 . . . .  , h,_ 1, 0 and - h , _  1, -h ,_2 ,  ..., --hi, 0. 

The second path is equivalent to the first path but with - k  0 
wave vector for the incident beam, so that relation (3) now 
has to include the minus sign: 

Rk 0 = _+k 0. (5) 

The minus sign is obviously superfluous for centrosym- 
metric structures but has to be considered in the non-centro- 
symmetric case. In particular relation (5) is always satisfied 
for an inversion boundary (R = [) and for any orientation of 
the incident beam: the Friedel law is always satisfied for 
bright-field images in three-dimensional diffraction. 

Table 1 illustrates relations (3) and (5) for the cases where 
R is a crystallographic operation (merohedral twins or twins 
generated by a length-preserving phase" transition). As an 
example of the use of the table let us consider the inversion 
twins obtained by ordering of LiFe508 (Pottier, Gratias & 
Fayard, 1977). The point group of the ordered structure 
being {432}, an inversion boundary is characterized by the 
multiplication of the inversion l by the elements of { 432}: 

{g} = i x {432}. 

We consider the [1111 zone axis diffraction (Fig. 1). There is 
no centre of symmetry in the two-dimensional projection of 
the crystal and inverse domains generally show a difference 
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of background intensity. However, it may be possible to 
obtain equal intensity for dark-field micrographs performed 
with h diffraction spots satisfying relation (4) for at least one 
point operator of /R t. Such is the case for the (I 10) and 

Table 1. Conditions under which a diffracting spot h = R h 
exhibits no intensity change between crystal twins 

O intersection of k 0 with the diffracting plane. 
A intersection of the R operation with the diffracting plane. 

Location of the projection of the centre 
of the Ewald sphere on the diffracting 

plane 

Upper-layer Zero-layer 
R interactions interactions 

Even axis perpendicular Only central spot A 
to k o O 

Axis parallel to k o Only central spot 
O 

Mirror perpendicular Only central spot Always 
to ko O 

Mirror parallel to k 0 A 

Inversion centre Only central spot 
Always 

(112)-type reflections because R 1 = i x 2f0011 = mr0011 and 
R 2 = r × 2t01~ 1 = mt01~ 1 leave respectively i l 0  and 211 
invariant. From Table 1 it can be shown that R = rnloo~ j 
may not satisfy relation (3) for the [ 111] zone axis because 
this mirror is neither parallel nor perpendicular to the zone 
axis (k 0 is not invariant by this mirror). The (110) spots 
exhibit a difference in background intensity between inverse 
domains. On the contrary, the mt0~ j mirror being parallel to 
the zone axis whatever the orientation of k 0 such that k 0 is 
contained in m, the h = 211 spot shows no background 
intensity change. In this case the projection of the Ewald 
sphere centre is located on the A geometrical locus of the 
table, which is the intersection of the R mirror with the 
diffracting zone. This result holds for zero- and upper-layer 
interactions. Moreover, the ( l l 0 ) - t ype  reflections of the 
pattern deduced from each other by the R-mirror have 
exchanged intensities between the inverse domains, because 
relation (3) is satisfied. If we try to obtain equal intensities in 
inverse domains for all the ( l l 2 ) - t ype  spots in the 
pattern, the k o vector has to be simultaneously invariant with 
respect to the different R mirrors involved (ml i~01,rnl lo~i,ml0Dl): 
the projection of the Ewald sphere must exactly correspond 
to the central spot O (intersection of k o with the diffracting 
zone); in this case the actual trigonal symmetry_of the 
pattern clearly appears because the 110, 101 and 011 spots 
exhibit the same intensity_ for a_given crystal (and are 
exchanged with the 110, 101, 011 spots for the inverse 
crystal). The experimental observations of these symmetry 
properties have been shown previously (Portier et al., 1977). 
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Fig. 1. Example of use of the table: geometrical locus A of the pro- 
jection of the Ewald sphere for the 211 reflection to show no 
backgound intensity change between two inverse domains of 
point group 432. If k 0 is exactly projected on O all the 112-type 
reflections of the pattern show no background intensity change. 
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